Dynamic Objects W orkshop
Object W orld, 1996

Dynamic Objects and Meta-level Programming of an EXPRESS Language Environment

Peter Denno

Manufacturing Systems Integration Division
National Institute of Standards and Technology
Gaithersburg, Maryland, USA

pdenno@cme.nist.gov
(301) 975-3595

ABSTRACT have contrilited to the deslopment of an EXPRESS language en-
vironment and he these same techniques might find use in the

This paper describes design and programming techniques em_larger context of STEP development.

ployed in the deelopment of a language eronment for the
EXPRESS information modeling language. A fundamental con-
cern in the deelopment of language @nonments for object
flavored languages is thegtee to which the object model of the 2.0 BACKGROUND
implementation language matches that of the language being mod- xpRESS [1ISO-11], [Schenck] is a formal language used to de-
eled. If there is significant mismatch, the programmer is forced to g¢ripe information models of STEPhe STEP standards support
reconcile the dferences with little aid from the implementation ¢ unambiguous communication of industrial information e
language’s object modele. escheving the implementation's na- changed in forms dafed from EXPRESS language information
tive object model and programming with elementary tools the mqgels! within the STEP architecture, moduct modelthat is,
object oriented behaviors of the target language environment. This 4, jnformation model from which a range of similar adit can
paper describes how object model mismatch was eliminated and ape gescribed, is defined by application protocolfor example,
responsive, incremental EXPRESS language environment is being e application protocoBhip Structures[|SO-218]). Application
dewloped using the Common Lisp Object System (CLOS) protocols rely on libraries of commonly used concepts ciriied
metaobject protocol (MOP) and dynamic object techniques. grated resourcesThe integrated resources collectively describe an
abstract model of products. Components of the abstract model in-
clude, for @ample, Geometric and dpolagical Repesentations
1.0 INTRODUCTION [1SO-42], which can be used in the description of application pro-
tocol for ship structures, automagicomponentsgtc.. The reuse
of common components improves the quality and development ef-
ficiengy of application protocols andhdilitates information
sharing among related disciplinesd., design systems and pro-
duction scheduling systems may share an entity authorizing the
release of a part for production).

The paper kgins with a presentation of background information
recarding EXPRESS and its role in ISO 10303, more commonly
referred to as STEP (The Standard for the Exchange of Product
Model Data). Section 2.1 primles an werview of design princi-
ples commonly empied in the design of EXPRESS language
tools. Sections 2.2 and 2.3 concern the problems of object model
mismatch that confront designers of EXPRESS tools. Section 3.0 Integrated resources and application protocols are defined in the
presents aspects of the auted@ommon Lisp implementation of EXPRESS language. Further discussion of the STEP architecture
an EXPRESS languagewmnment. It describes solutions to the [ISO-1] is outside the scope of this paper.
problems introduced in section 2 empta dynamic object tech-
niques, CLOS and its metaobject protocol. Section 4.0 describes
additional aspects of the EXPRESS languager@mment cur-
rently under deelopment. The paper concludes with a summary —
of honv dynamic object techniques and meteeleprogramming 1EXPRESS itself is an 1SO standard developed by the STEP community.

In order to cowey the information intended, systems that e

model, the STEP community is quite interested in tools that im-

change data must agree upon the semantics of that data. Aprove the efficiency of EXPRESS development.

fundamental design goal of an information modeling language,
such as EXPRESS, is to pide the means to describe informa-
tion models (and subsequently data) reflecting a mutually
understood semantics. That is, the language is used to define con
straints which data setx@ghanged must satisfyn EXPRESS
these constraints take several forms:

Constraints on an attribute’s type? 3 the value of an
attribute must be type-compatible with the type declared
in the attributes’s declaration.

Constraints on semantic consistency of entity
instances:Rules calledvhere rulescan be associated
with an entity type. For example, an entity type named
unit-vector possessinREALvalued attributex

andy might hae a where rule requiring*2 + y**2

=1 . These rules are procedurally defined in EXPRESS
and may rely on built-in and user-defined functions and
procedures.

Constraints on an entity instance’s typeEXPRESS
provides a flexible mechanism for defining and compos-
ing hierarchical entity types (calledmplex entity

typed and constraints on the legal composition of types
within the hierarchy. For example, an abstract {ype

son might have subtypasale andfemale . An

instance operson must be one ahale orfemale

but not both.

Constraints on populations of entity instancesPopu-
lations of entities (data sets) must satisfy constraints
described irglobal rules Such rules can, for example,
constrain the cardinality of the instances of a type.(
there is only one CEO) or require specific relationships
between entitiese(g, every employee has a supervisor).

Constraints on the existence of an entity instanc&he
existence on an entity may depend on the existence of
another entity.

2.1 Classification of EXPRESS Langua ge Environments

A language erironment for EXPRESS, that is, anvennment
that allows the delopment of EXPRESS information models and

sample data sets, can be of great value to developers of EXPRESS

information models. The EXPRESS for some STEP standards can
run into the thousands of lines of code. Since thveldpment of
STEP standards has peal to be a lengshprocess and a Ige part

of that effort invol\es the articulation of an EXPRESS information

“Attributescorrespond to C++ data members or CLOS slots. Attributes are
associated witlentities analogous to C++ or CLOS classes.

SEXPRESS defines the usual primétitypes and enumeration and ato
userdefined types that generalize or specialize on prienitr other user
defined types

Sewral tools supporting EXPRESS védopment gist, [Wil-
son], [Libes], [Morris], [STI], [Kielenbeck]. The focus of these
tools is more the validation of data sets, the exploration of existing

models, and the generation of application istegt than it is the
incremental development ofweEXPRESS models. Theonk de-
scribed here has as its goal thevedepment of a respons,
incremental development environment for the concurrent develop-
ment of EXPRESS models and represevgatiata sets, (such an
environment as is available to Lisp programmers).

The design of languageeéronments include strictly interpret-
ed approaches, strictly compiled approaches, and designs that
utilize both interpretation and compilatioro @late, compiled ap-
proaches to EXPRESS tools ([Morris], [STI], [Keskbeck]) use
the subject EXPRESS to automatically generate code in an imple-
mentation languagee(g.,C++) which is then compiled and link-
edited with auxiliary libraries that are independent from the sub-
ject code. Compiled approaches to EXPRESSr@mments hee
adwantages er interpreted approaches in that libraries of com-
piled EXPRESS can be sl for later inclusion in information
models without incurring the cost of interpretation. Also, the auto-
matically generated source code is often useful @mious
applications that ant access to data in the form defined by the
subject EXPRESS model. Compiled approaches where compila-
tion and link-edit are lengyh however can not support a
responsie, incremental deelopment ewironment: complete pro-
cessing of layje EXPRESS models using this approach cam 38k
minutes or more.

A strictly interpreted approach can be more respertsi the in-
cremental deslopment of the EXPRESS subject codé ¢an not
take adwantage of compiled libraries of supporting EXPRESS in-
formation models. Nor can interpreters implemented in statically
compiled languages use the constructs of the langeagec(ass-
es, iteration, arithmetic operations) in direcys. or example,
an interpreter can not generate and use a C++ class to represent an
EXPRESS entity type.df these reasons, thevééopment of an
interpreter requires the ddopment of fundamental supporting
mechanisms unnecessary in compiled approaches. Therefore, the
dewelopment of an interpreter for a language aglas EXPRESS
is a daunting task. Recent developments in the design of interpret-
ers, havever might male interpreted approaches more feasible,
(e.g.,[Liang]).

Approaches that use both compilation and interpretation are
commonly implemented in languages possessing resident
programming environments, such as Smalltalk or Lisp.

2.2 Mismatch of Object Models

EXPRESS is an information modeling language, not a program-
ming language. EXPRESS is 'objectvfieed’ lut not strictly
object oriented. (It does not encapsulate state with methods). EX-
PRESS mags a distinction between classes and instances;sallo
class hierarchies and inheritance of data attributes.

An object modeis a model with a class/instance distinction, en-
capsulation of state via methods and inheritance ofviimhiaom

parent classe€oncrete object modelose underlying program-
ming languages,ary with respect to inheritance, encapsulation,
information hiding, dynamic capabilities andrius other fea-
tures [Manola]. A fundamental concern in thezelepment of a
language erironment for an object flared language is the de-

An example of this behaor (calledANDOR subtypindnere) is
illustrated in the following example EXPRESS.

ENTITY a SUPERCLASS OF (b ANDOR ¢ ANDOR d);

This clause declares that the entity combinations a, a+b, a+c,

gree to which the object model of the implementation language a+d, a+b+c, a+b+d, a+c+d and a+b+c+d are all instantiable, where
matches that of the language being modeled. If there is significant a+b+c, for @ample, denotes an angnous classdomple entity

mismatch between the object model of the implementation lan-

type possessing the attribes (data members, slots) of the classes

guage and that of the target language, the programmer is forced toa, b and c.

reconcile the dferences with little aid from the implementation
language's object model. That is, s@ftesis not reusedubrather,
beginning a@in with elementary tools, the programmer imple-
ments the object oriented bef@s of the taget language
ervironment. This, of course, is a great amount ofkfor what
might be a small (it crucial!) deiation towards the behaors of

the taget object model. This paper hopes to illustrate gieevof

a metaobject protocol (specifically the CLOS metaobject protocol)
in reconciling the dferences between the object models of the tar-
get and implementation languages.

2.3 Three Challenges in Object Model Mismatch 4

The EXPRESS object modetiiffers in some important ays
from the concrete object models underlying common program-
ming languages (C++, Smalltalk, CLOS). Significant areas of

Very different solutions to these challenges may be found de-
pending on the implementation language chosen.
CHALLENGE(same-named-atti¥ met quite easily when EX-
PRESS entities are represented as C++ classesdguicthat the
inheritance is declared virtual. On the same challenge CLOS does
not map well; it combines the two attributes into one slot. Howev-
er, by using the CLOS meta-object protocol, a reddyi simple
solution to this problem can be found.

Solutions taCHALLENGE(redefined-attmequire knowledge of
the attritute’s type in order to determine whether the type of the
attribute of the child is indeed a restriction of the type found in the
same-named attiibe of the parent. The implementation lan-
guages ability to prewvide access to descripéi information about
the class€.g, names of attribtes, attrilite objects, superclasses,
precedence orderingic) can facilitate this effort. For example, in
CLOS, usewdefined classes are instancestaindard-class

mismatch between these languages and EXPRESS are found inor some programmatefined subtype of istandard-class

the inheritance of attrilies (C++ data members, or CLOS slots)

is a subclass aftandard-object , on which default behaviors

and the approach to subclassing. Three characteristics of the EX-for objects are defined. Since classeg.(the classes representing

PRESS language that present challenges in tedafenent of an
EXPRESS language environment are described below:

« CHALLENGE(same-named-attr)When same-named
attributes of two EXPRESS entities are inherited through
two distinct paths (EXPRESS allows multiple inherit-
ance) two distinct attrilies are inherited by the subclass,
one from each parent defining the attribute.

* CHALLENGE(redefined-attr):In EXPRESS an attrilie
defined in a supertype may be redefined in the subtype
only if the domain of &lues of the subtype is a restriction
of the domain of the supertype. Thus an attribute of type
number in the supertype can be redefined as type
integer in the subtype, but dnteger in the super-
type can not be redefined aswanber in the subtype.

e CHALLENGE(ANDOR-subtyping):Unless explicitly
prohibited by a clause in the entity definition, the direct
subtypes of an EXPRESS entity type can be combined to
define additional subtypes.

EXPRESS entity types) are instances thenesglthe same ma-
chinery used by other instancesg(, access to attrilie \alues,
object constructioretc) can be reused by instances that are class-
es. An EXPRESS languagevaonment can use this machinery
directly, with one &ception: since the type system and sense of
type restriction defined in EXPRESS does not map directly to the
Common Lisp type system, the programmer must define a method
to order types by specificity.

In part because C++ classes are not objects theasseB#+
provides little support for solutions to this challenge. In C++, the
typeid operation applied to an object can be used to obtain a
type_info object for the original object, on which operations
for type collating, type equality and access to the gypame are
defined [X3J16]. Howeveno mechanismxésts in C++ to identi-
fy the data members.€., EXPRESS entity attrilites) of a class.
Therefore, some means other than querying the class must be
found to obtain attrittes. One method is to define ‘dictionary’ ob-
jects for both entities and attuites. These objects supplement the
information found in the class with references to attelobjects.
Dictionary objects are, in essence, a partial forfeiture from the
mapping of EXPRESS entity types to clasdes.

CHALLENGE(ANDOR-subtyping$ the problem of managing

“These are, of course, challenges for compiled approaches. Interpreted apthe proliferation of classes possible in ANDOR subtyping. That is,
proaches using static implementation languages can not make use of thehacguse of ANDOR subtyping, a dar EXPRESS information

objects in these ways.

5AIthough not strictly object oriented, EXPRESS possesses enough of the

characteristics of an object oriented language to make use of thelierm
ject modelmeaningful in this context.

model can result in the definition of hundreds of comgetity
types. ANDOR subtyping, although an advantage from the model-
er's standpoint, is a challenge to the languageir@mment
programmer. Br the C++ programmethe question is whether to
implement each compleentity as a class, thereby increasing the

size of the image and compile time, or opting for some solution
where comple entity types are not represented as a single C++
class, and thereby forfeiting some of the simplicity andagiee

in the object model mapping. An effective and simple CLOS solu-
tion to the proliferation of classesa& implemented in this avk.

It utilizes dynamic objects called ‘programmatic classes’ that are
composed as needed froxisting classes. [Kiczales]. This is de-
scribed further in the next section.

In the system being deloped, CHALLENGE(ANDOR-subtyp-
ing), that is, the proliferation of classes that might result if all
classes, including those that mighteebe populated, are created,
is sohed through the use of the programmatic class approach. A
programmatic class, as described in [Kiczales], is a class generat-
ed at run-time by composing a fromigting classes. Thexisting
classes, in our case, are the classes representing simple entity
types produced through translation of the EXPRESS source.

In an EXPRESS efronment, generation of programmatic

classes for the entity types requires \whealge of theevaluated

set the set of all Igal entity types [ISO-11]. Thevaluated set is
calculated by a computation on the declaration of subtyping con-
straints (thesupertype-constraint clausef all entity declarations

in the subject EXPRESSThis computation generates a structure,
complex-entity-type , for each element of thevauated

set. This structure identifies the simple entity types (those which

3.0 ELEMENTS OF THE SOLUTION

The author is deeloping an EXPRESS languagevieanment
using Common Lisp and the CLOS metaobject protocol. A
metaobject protocol is an intade to a language thatvgs the
programmer the ability to incrementally modify the langusiye*-
havior and implementation [Kiczales]. The metaobject protocol is > ' 3 >
used to eliminate the mismatch between the implementation lan- &€ &plicitly defined in the EXPRESS source) composing the
guage (CLOS) object model and thegitrlanguage (EXPRESS) comple entity type. Whe_n an EXPRESS entity instance is en-
object model so that the mechanisms of the implementation lan- countered through reading data in thecteange format of
guages object systeme(g., object definition, instance creation, ~EXPRESS information models, [ISO-21], its type is cleetk
method dispatchingtc) can be reused. The maition behind agalr_lst the ealuated set _and, ifgal and already generated, is in-
this approach is the belief that the reuse of these mechanisms willStantiated. If the type is dal but the class has not yet been

enhance the quality and speed of implementation. generated, the class is generated using the programmatic class
mechanism. Through this means classes representing coenple

tity types are not defined until there is a need to instantiate an
entity of that class. The programmatic class generated contains the
information and attriites of each of the superclasses (simple enti-
ty types) from which it inherits.

The solution also employs dynamic object technigees fun-
time class definition, class redefinition). Dynamic object tech-
niques support the requirements that thevirenment be
responsie and that information models undeve@epment may
be incrementally refined. Dynamic object techniques alsag®o

a solution to the proliferation of classes that can occur because of CHALLENGE(same-named-atti a challenge for Common
EXPRESS ANDOR subtyping. Lisp because CLOS classes inheriting a same-named slot from

o o o o two superclasses produce a single slot. CLOS classes inherit this
A principle benefit of implementing in Common Lisp is that the pepajior from the standard class metaobject (sometimes called a
design may possess the adiages of both compiled and interpret- metaclasy STANDARD-CLASS. The solution to this problem
ed approaches with Ve of the disadantages of eitherFor uses the metaobject protocol to yide a subclass 0STAN-
example, adantages of a compiled approach can be had: the sys- pARD-CLASS(calledEXPRESS-CLASShere) that overrides the
tem can translate EXPRESS information models into Common gt computation methods @TANDARD-CLASSvith methods
Lisp source code that can be compiletiliol and loaded at gn that produce multiple slots in accordance with EXPRESS object
time during a session with the system.deatibraries of eisting model behwaior. Although the class of the classes representing
EXPRESS information models can be accessed by the EXPRESSExpRESS entity types is no long8TANDARD-CLASSother
dewloper by these means. On the other hand, the benefits of an in-c|3sses in the system are undisturbed by this modification.

terpreter remain: EXPRESS written in the current session can]))
immediately and incrementally be madeaitable by run-time The .metaobject. protocol is also useq to ensure t.he.tt. all of the in-
translation to Common Lisp angiauation by the lisp interpreter ~ formation found in an EXPRESS entity type definition can be
Because Common Lisp provides a resident programming environ- €ncoded in the corresponding CLOS class objertekample, the
ment and interpretethe deelopment of a compieinterpreter standard CLOS metaobject defining slot featuBBANDARD-
‘execution engine’ is obviated. SLOT, was subclassed by a claSXPRESS-SLOTto allov the

recording of EXPRESS-specific features of atti@s. Br exam-

ple, EXPRESS entity attribles may be declared @PTIONAL
e so that instances are free tovedhat attribute’s value unspecified.
5The careful reader might recognize that, for even more fundamental rea- To implement this featur&€XPRESS-SLOTextends the class

sons (because C++ does not allow run-time creation of classes) dictionary STANDARD-SLOTwith an additional slotOPTIONAL-P, indi-
objects are necessary in every incremental development environment im- '

plemented in C++ (to describe entity types). The point here is to illustrate

one advantage of having information about the class available in the class:

the programmer has one less requirement on his implementation of dictio- “The supertype-constraint clause includesAN®ORonstraint described
nary objects. earlier as well a8NQ ONEOFandABSTRACTconstraints.

cating whether the EXPRESS attrib is optional. In a similar perform the translation, the source language isdoihvparsed into

fashion the EXPRESS attute featuresDERIVED INVERSE structures, then rewrite rules are executed to transform the abstract
andUNIQUE and the recording of the attife’s source (the sim- syntax tree structures to a tree corresponding to tigettéan-
ple entity type from which it is inherited) and EXPRESS type is guage. Finallythe re@erse parser (print functions) of theger
accommodated in the extended slot definition metaobject. language is used to produce the corresponding statements in the

tamget language. Using this approach, translation gelgra mat-

ter of specifying the BNF for both languages and setsvafitee
rules to transform the syntax tree from the form of the source lan-
guage to form of the target language.

A solution toCHALLENGE(redefined-attr)where it is neces-
sary to determine whether the domain of an aiteilin a subtype
is indeed a restriction of the domain of the same-nameduagtrib
in the supertype, has yet to be implemented. The solution requires

analysis of the types of both atuiles and will probably be ac- The transformation of the abstract syntax tree is performed by a
complished by unificatidhon the typed feature structures stored sister application of Zebcalled Zebra, [Knrad]. Zebra pnades
as type information of the attributes involved. a rule-based language for the pre-order and post-order transforma-

tion of abstract syntax trees produced by Zebu.

Zehu and Zebra hae been ery efective tools in @ercoming
4.0 SYSTEM ARCHITECTURE the complexity of EXPRESS translation.

EXPRESS is a moderately ¢gr languagé.Because of this, an
efficient solution to the problem of translating EXPRESS source
to Common Lisp forms is essential. The system, therefore, is com- 5.0 CONCLUSION

prised of three components: The immediate goal of thisatk has been the design of a tool

e acore component that provides the behaviors of the for the eficient development of EXPRESS models. Such a tool
EXPRESS object model, as described earlier, and entity will serve the needs of EXPRESSveééopers. The software should
instance reading and writing routines using STEP file- also find reuse in the @elopment of EXPRESS translatoesd.,
based exchange form, [ISO-21]; to CORBA IDL [CORBA], Unified method [Booch]getc). Be-

yond EXPRESS lay the Iger aspects of the STEP architecture,
(e.g.,application protocols, intgated resources). The application

of these same techniques of meta-level and dynamic programming
to these aspects STEP, for example, for the facilitation of reuse of
integrated resources in application protocols, mayide an
even greater benefit.

. an EXPRESS parser that builds typed feature structures
from the input EXPRESS. (Feature structures are ele-
ments of a logic on which unification, generalization and
specialization are defined). Typed feature structures are
modeled as Common Lisp structures;

* arule-based syntax transformation component that trans-
forms the syntax tree of feature structures produced by
the parser to a syntax tree of feature structures in the tar-
get language, Common Lisp.

Finally, this work has shan that a good design of a language
ervironment for a object flored language may use the imple-
mentation language’'metaobject protocol (where ongists) to
align the implementatios’object model bek@rs with the needs

The last two of these components are discussed in this section. Of the taget language objects. This approach may result in a
i) smaller, more comprehensible program. Because the machinery of
An EXPRESS parser is produced from the Zedversible LA-

native object system is reused, the programmer may continue to
LR(1) _par;er generator [Lau_bsch]. Zegenerates parsers that are use the dmiliar, natve means of attrilte access, object creation
reversible in the sense that it produces code for both a &faliv and method definition.
parse to Common Lisp structures and aéree” parse back to the
source languagee(g., EXPRESS). The erse parse is imple- Dynamic object techniques areditise critical to the solution.
mented as print functions on the Common Lisp structures Dynamic object creation alles a straightfonard solution to the
generated in the foravd parse. Hence when a Common Lisp Proliferation of implicitly defined, potentially unpopulated classes

structure resulting from the foewd parse of EXPRESS is printed ~ that might otherwise result from EXPRESS ANDOR subtyping.
by Lisp, it appears as the original EXPRESS. Because classes may be created at run-time, the system can be far

more responsive to the incremental development of the EXPRESS

Translation with the Zebu reversible parser can be performed by ;torm240n model.

providing rewersible parsers for both the input languagyg.(EX- -)) _
PRESS) and the output languageg(, certain lisp forms). @ In addition to the techniques of dynamic object and metl-le
programming, an étient means to translate from the subject lan-

8[Carpenter] provides an introduction to the logic of typed feature struc- 10Recall that lisp programmers have the freedom to define how some lisp

tures. objects are printed by the lisp printer. Structures are printed according to a
function defined in thelefstruct . CLOS objects are printed according
%The EXPRESS grammar consists of more than 450 productions. to the methogbrint-object

guage is necessarplthough, to date, only a small amount of

sources: Geometric and Topological Representatisternational

necessary syntax transformation has been performed in this Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

project, the combination of versible parsers with rule-based tree
transformation looks very promising.

ACKNOWLEDGEMENTS

The author wuld like to acknwledge the important conttib
tion to the softwre deelopment of this project made by Joachim
Laubsch of Hevlett-Packard Laboratories, who d&oped Zeh
and preided hug fixes and suggestions. lekise, Karsten kn-

rad’s program, Zebra, and his suggestions on its usage helped to

malke this work much easiefThe author wuld also lile to thank
the workshop reiewers, Daid Terebessy and kaence Mayka
and NIST reiewers, Bill DannerKC Morris and Mary Mitchell
for insightful comments. Bill Dannex’ideas for future delop-
ment are especially appreciated.

REFERENCES

[Booch] Grady Booch and James Rumbaugdhified Method
for Object-Oriented DevelopmerRational Software Corporation,
1995.

[Carpenter] Bob Carpentefhe Laic of Typed Featue Struc-
tures Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, 1993

[CORBRA] The Object Management Group, Inthe Common
Object Request Bker: Architectue and Specification (CORE,
The Object Management Group Inc., http://raioyg.org/pubo-
dr.htm#Publications, 1995

[ISO-1] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exang — Overviee and Fundamen-
tal Principles International Standard, 1SO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/stép, 1994.

[ISO-11] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Description Methods: The
EXPRESS Langge Refeence Manual International Standard,
ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-21] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Implementation Methods:
Clear Text Encoding of the Ekang Structue, International
Standard, ISO TC184/SCA4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-42] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Ekange — Intgrated Generic Re-

1450 IS level references are copyrighted and may be purchased from 1SO.

Draft copies can be obtained for free at this FTP address.

[ISO-218] International @anization for StandardizatiohSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Application Rstocol: Ship
Structures, International Standard, I1SO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step, 1994.

[Liang] Sheng Liang, &l Hudak and Mark Jone$/onad
Transformes and Modular Interpeters Principles of Program-
ming Languages’95, San Francisco, CA, January, 1995.

[Libes] Don Libes and Steve Clarkhe NIST EXPRESS Toolkit
- Lessons LearnedEXPRESS Users Group Conference Proceed-
ings (EUG’92) Dallas, Texas, October 17-18, 1992.

[Kiczales] Gregor Kiczales, Jim des Rivieres and Daniel G. Bo-
brow, The Art of the Metaobject Btocol, The MIT Press,
Cambridge, Massachusetts, 1991.

[Kiekenbeck] Juagyen Kielenbeck, Annette Sgenthaler and
Gunter SchlageteEXPRESS to C++: A mapping of the type-sys-
tem EXPRESS Users Group Conference Proceedings (EUG’95)
Grenoble, France, October 21-22, 1995.

[Konrad] Karsten Knrad,Abstiakte Syntaxinsformation mit
getypen MerkmalstermenDiplom Thesis, ftp:/cl-ftp.dfki.uni-
sb.de, September 23, 1994.

[Laubsch] Joachim LaubscEehu: A Tool for Specifying Re-
versible LALR(1) Brsers Hewlett-Packard Laboratories,
Software Technology Laboratoryinternal Report, July 26, 1995.
http://www.cs.cmu.edu/Web/Groups/Al/html/repository.html.

[Manola] Frank Manola, EditprX3H7 Technical Committee
(Object Information Managementfeatures Matrix of Object
Models, Final Technical Report, ftp://ftp.gte.com/pub/dom/x3h7/
adfinal.ps, March, 1996.

[Morris] Katherine C. Morris, Dad Sauder and Sandy Ressler
Validation Testing System: Reusable Software Component Design
National Institute of Standards an@chnology NISTIR 4937,
October, 1992

[Schenck] Douglas Schenck and Peteils@h, Information
Modeling: The EXPRESS Wéyxford University Press, 1994.

[STI] STEP Dols Inc.,Home Rge http://wwwsteptools.com/
index.html

[Wilson] Peter Wilson, EXPRESS dols and Services, (1990-
1995) ftp://publ/step/express/tools/etools.ps, September, 1995.

[X3J16] ANSI Accredited Standards Committee X3JM@yrk-
ing Paper for Dmaft Proposed International Standar for
Information Systems Bgramming Languge C++, http:/
www.cygnus.com/misc/wp/draft/, April 28, 1995.

Dynamic Objects W orkshop
Object W orld, 1996

Dynamic Objects and Meta-level Programming of an EXPRESS Language Environment

Peter Denno

Manufacturing Systems Integration Division
National Institute of Standards and Technology
Gaithersburg, Maryland, USA

pdenno@cme.nist.gov
(301) 975-3595

ABSTRACT have contrilited to the deslopment of an EXPRESS language en-
vironment and he these same techniques might find use in the

This paper describes design and programming techniques em_larger context of STEP development.

ployed in the deelopment of a language eronment for the
EXPRESS information modeling language. A fundamental con-
cern in the deelopment of language @nonments for object
flavored languages is thegtee to which the object model of the 2.0 BACKGROUND
implementation language matches that of the language being mod- xpRESS [1ISO-11], [Schenck] is a formal language used to de-
eled. If there is significant mismatch, the programmer is forced to g¢ripe information models of STEPhe STEP standards support
reconcile the dferences with little aid from the implementation ¢ unambiguous communication of industrial information e
language’s object modele. escheving the implementation's na- changed in forms dafed from EXPRESS language information
tive object model and programming with elementary tools the mqgels! within the STEP architecture, moduct modelthat is,
object oriented behaviors of the target language environment. This 4, jnformation model from which a range of similar adit can
paper describes how object model mismatch was eliminated and ape gescribed, is defined by application protocolfor example,
responsive, incremental EXPRESS language environment is being e application protocoBhip Structures[|SO-218]). Application
dewloped using the Common Lisp Object System (CLOS) protocols rely on libraries of commonly used concepts ciriied
metaobject protocol (MOP) and dynamic object techniques. grated resourcesThe integrated resources collectively describe an
abstract model of products. Components of the abstract model in-
clude, for @ample, Geometric and dpolagical Repesentations
1.0 INTRODUCTION [1SO-42], which can be used in the description of application pro-
tocol for ship structures, automagicomponentsgtc.. The reuse
of common components improves the quality and development ef-
ficiengy of application protocols andhdilitates information
sharing among related disciplinesd., design systems and pro-
duction scheduling systems may share an entity authorizing the
release of a part for production).

The paper kgins with a presentation of background information
recarding EXPRESS and its role in ISO 10303, more commonly
referred to as STEP (The Standard for the Exchange of Product
Model Data). Section 2.1 primles an werview of design princi-
ples commonly empied in the design of EXPRESS language
tools. Sections 2.2 and 2.3 concern the problems of object model
mismatch that confront designers of EXPRESS tools. Section 3.0 Integrated resources and application protocols are defined in the
presents aspects of the auted@ommon Lisp implementation of EXPRESS language. Further discussion of the STEP architecture
an EXPRESS languagewmnment. It describes solutions to the [ISO-1] is outside the scope of this paper.
problems introduced in section 2 empta dynamic object tech-
niques, CLOS and its metaobject protocol. Section 4.0 describes
additional aspects of the EXPRESS languager@mment cur-
rently under deelopment. The paper concludes with a summary —
of honv dynamic object techniques and meteeleprogramming 1EXPRESS itself is an 1SO standard developed by the STEP community.

In order to cowey the information intended, systems that e

model, the STEP community is quite interested in tools that im-

change data must agree upon the semantics of that data. Aprove the efficiency of EXPRESS development.

fundamental design goal of an information modeling language,
such as EXPRESS, is to pide the means to describe informa-
tion models (and subsequently data) reflecting a mutually
understood semantics. That is, the language is used to define con
straints which data setx@ghanged must satisfyn EXPRESS
these constraints take several forms:

Constraints on an attribute’s type? 3 the value of an
attribute must be type-compatible with the type declared
in the attributes’s declaration.

Constraints on semantic consistency of entity
instances:Rules calledvhere rulescan be associated
with an entity type. For example, an entity type named
unit-vector possessinREALvalued attributex

andy might hae a where rule requiring*2 + y**2

=1 . These rules are procedurally defined in EXPRESS
and may rely on built-in and user-defined functions and
procedures.

Constraints on an entity instance’s typeEXPRESS
provides a flexible mechanism for defining and compos-
ing hierarchical entity types (calledmplex entity

typed and constraints on the legal composition of types
within the hierarchy. For example, an abstract {ype

son might have subtypasale andfemale . An

instance operson must be one ahale orfemale

but not both.

Constraints on populations of entity instancesPopu-
lations of entities (data sets) must satisfy constraints
described irglobal rules Such rules can, for example,
constrain the cardinality of the instances of a type.(
there is only one CEO) or require specific relationships
between entitiese(g, every employee has a supervisor).

Constraints on the existence of an entity instanc&he
existence on an entity may depend on the existence of
another entity.

2.1 Classification of EXPRESS Langua ge Environments

A language erironment for EXPRESS, that is, anvennment
that allows the delopment of EXPRESS information models and

sample data sets, can be of great value to developers of EXPRESS

information models. The EXPRESS for some STEP standards can
run into the thousands of lines of code. Since thveldpment of
STEP standards has peal to be a lengshprocess and a Ige part

of that effort invol\es the articulation of an EXPRESS information

“Attributescorrespond to C++ data members or CLOS slots. Attributes are
associated witlentities analogous to C++ or CLOS classes.

SEXPRESS defines the usual primétitypes and enumeration and ato
userdefined types that generalize or specialize on prienitr other user
defined types

Sewral tools supporting EXPRESS védopment gist, [Wil-
son], [Libes], [Morris], [STI], [Kielenbeck]. The focus of these
tools is more the validation of data sets, the exploration of existing

models, and the generation of application istegt than it is the
incremental development ofweEXPRESS models. Theonk de-
scribed here has as its goal thevedepment of a respons,
incremental development environment for the concurrent develop-
ment of EXPRESS models and represevgatiata sets, (such an
environment as is available to Lisp programmers).

The design of languageeéronments include strictly interpret-
ed approaches, strictly compiled approaches, and designs that
utilize both interpretation and compilatioro @late, compiled ap-
proaches to EXPRESS tools ([Morris], [STI], [Keskbeck]) use
the subject EXPRESS to automatically generate code in an imple-
mentation languagee(g.,C++) which is then compiled and link-
edited with auxiliary libraries that are independent from the sub-
ject code. Compiled approaches to EXPRESSr@mments hee
adwantages er interpreted approaches in that libraries of com-
piled EXPRESS can be sl for later inclusion in information
models without incurring the cost of interpretation. Also, the auto-
matically generated source code is often useful @mious
applications that ant access to data in the form defined by the
subject EXPRESS model. Compiled approaches where compila-
tion and link-edit are lengyh however can not support a
responsie, incremental deelopment ewironment: complete pro-
cessing of layje EXPRESS models using this approach cam 38k
minutes or more.

A strictly interpreted approach can be more respertsi the in-
cremental deslopment of the EXPRESS subject codé ¢an not
take adwantage of compiled libraries of supporting EXPRESS in-
formation models. Nor can interpreters implemented in statically
compiled languages use the constructs of the langeagec(ass-
es, iteration, arithmetic operations) in direcys. or example,
an interpreter can not generate and use a C++ class to represent an
EXPRESS entity type.df these reasons, thevééopment of an
interpreter requires the ddopment of fundamental supporting
mechanisms unnecessary in compiled approaches. Therefore, the
dewelopment of an interpreter for a language aglas EXPRESS
is a daunting task. Recent developments in the design of interpret-
ers, havever might male interpreted approaches more feasible,
(e.g.,[Liang]).

Approaches that use both compilation and interpretation are
commonly implemented in languages possessing resident
programming environments, such as Smalltalk or Lisp.

2.2 Mismatch of Object Models

EXPRESS is an information modeling language, not a program-
ming language. EXPRESS is 'objectvfieed’ lut not strictly
object oriented. (It does not encapsulate state with methods). EX-
PRESS mags a distinction between classes and instances;sallo
class hierarchies and inheritance of data attributes.

An object modeis a model with a class/instance distinction, en-
capsulation of state via methods and inheritance ofviimhiaom

parent classe€oncrete object modelose underlying program-
ming languages,ary with respect to inheritance, encapsulation,
information hiding, dynamic capabilities andrius other fea-
tures [Manola]. A fundamental concern in thezelepment of a
language erironment for an object flared language is the de-

An example of this behaor (calledANDOR subtypindnere) is
illustrated in the following example EXPRESS.

ENTITY a SUPERCLASS OF (b ANDOR ¢ ANDOR d);

This clause declares that the entity combinations a, a+b, a+c,

gree to which the object model of the implementation language a+d, a+b+c, a+b+d, a+c+d and a+b+c+d are all instantiable, where
matches that of the language being modeled. If there is significant a+b+c, for @ample, denotes an angnous classdomple entity

mismatch between the object model of the implementation lan-

type possessing the attribes (data members, slots) of the classes

guage and that of the target language, the programmer is forced toa, b and c.

reconcile the dferences with little aid from the implementation
language's object model. That is, s@ftesis not reusedubrather,
beginning a@in with elementary tools, the programmer imple-
ments the object oriented bef@s of the taget language
ervironment. This, of course, is a great amount ofkfor what
might be a small (it crucial!) deiation towards the behaors of

the taget object model. This paper hopes to illustrate gieevof

a metaobject protocol (specifically the CLOS metaobject protocol)
in reconciling the dferences between the object models of the tar-
get and implementation languages.

2.3 Three Challenges in Object Model Mismatch 4

The EXPRESS object modetiiffers in some important ays
from the concrete object models underlying common program-
ming languages (C++, Smalltalk, CLOS). Significant areas of

Very different solutions to these challenges may be found de-
pending on the implementation language chosen.
CHALLENGE(same-named-atti¥ met quite easily when EX-
PRESS entities are represented as C++ classesdguicthat the
inheritance is declared virtual. On the same challenge CLOS does
not map well; it combines the two attributes into one slot. Howev-
er, by using the CLOS meta-object protocol, a reddyi simple
solution to this problem can be found.

Solutions taCHALLENGE(redefined-attmequire knowledge of
the attritute’s type in order to determine whether the type of the
attribute of the child is indeed a restriction of the type found in the
same-named attiibe of the parent. The implementation lan-
guages ability to prewvide access to descripéi information about
the class€.g, names of attribtes, attrilite objects, superclasses,
precedence orderingic) can facilitate this effort. For example, in
CLOS, usewdefined classes are instancestaindard-class

mismatch between these languages and EXPRESS are found inor some programmatefined subtype of istandard-class

the inheritance of attrilies (C++ data members, or CLOS slots)

is a subclass aftandard-object , on which default behaviors

and the approach to subclassing. Three characteristics of the EX-for objects are defined. Since classeg.(the classes representing

PRESS language that present challenges in tedafenent of an
EXPRESS language environment are described below:

« CHALLENGE(same-named-attr)When same-named
attributes of two EXPRESS entities are inherited through
two distinct paths (EXPRESS allows multiple inherit-
ance) two distinct attrilies are inherited by the subclass,
one from each parent defining the attribute.

* CHALLENGE(redefined-attr):In EXPRESS an attrilie
defined in a supertype may be redefined in the subtype
only if the domain of &lues of the subtype is a restriction
of the domain of the supertype. Thus an attribute of type
number in the supertype can be redefined as type
integer in the subtype, but dnteger in the super-
type can not be redefined aswanber in the subtype.

e CHALLENGE(ANDOR-subtyping):Unless explicitly
prohibited by a clause in the entity definition, the direct
subtypes of an EXPRESS entity type can be combined to
define additional subtypes.

EXPRESS entity types) are instances thenesglthe same ma-
chinery used by other instancesg(, access to attrilie \alues,
object constructioretc) can be reused by instances that are class-
es. An EXPRESS languagevaonment can use this machinery
directly, with one &ception: since the type system and sense of
type restriction defined in EXPRESS does not map directly to the
Common Lisp type system, the programmer must define a method
to order types by specificity.

In part because C++ classes are not objects theasseB#+
provides little support for solutions to this challenge. In C++, the
typeid operation applied to an object can be used to obtain a
type_info object for the original object, on which operations
for type collating, type equality and access to the gypame are
defined [X3J16]. Howeveno mechanismxésts in C++ to identi-
fy the data members.€., EXPRESS entity attrilites) of a class.
Therefore, some means other than querying the class must be
found to obtain attrittes. One method is to define ‘dictionary’ ob-
jects for both entities and attuites. These objects supplement the
information found in the class with references to attelobjects.
Dictionary objects are, in essence, a partial forfeiture from the
mapping of EXPRESS entity types to clasdes.

CHALLENGE(ANDOR-subtyping$ the problem of managing

“These are, of course, challenges for compiled approaches. Interpreted apthe proliferation of classes possible in ANDOR subtyping. That is,
proaches using static implementation languages can not make use of thehacguse of ANDOR subtyping, a dar EXPRESS information

objects in these ways.

5AIthough not strictly object oriented, EXPRESS possesses enough of the

characteristics of an object oriented language to make use of thelierm
ject modelmeaningful in this context.

model can result in the definition of hundreds of comgetity
types. ANDOR subtyping, although an advantage from the model-
er's standpoint, is a challenge to the languageir@mment
programmer. Br the C++ programmethe question is whether to
implement each compleentity as a class, thereby increasing the

size of the image and compile time, or opting for some solution
where comple entity types are not represented as a single C++
class, and thereby forfeiting some of the simplicity andagiee

in the object model mapping. An effective and simple CLOS solu-
tion to the proliferation of classesa& implemented in this avk.

It utilizes dynamic objects called ‘programmatic classes’ that are
composed as needed froxisting classes. [Kiczales]. This is de-
scribed further in the next section.

In the system being deloped, CHALLENGE(ANDOR-subtyp-
ing), that is, the proliferation of classes that might result if all
classes, including those that mighteebe populated, are created,
is sohed through the use of the programmatic class approach. A
programmatic class, as described in [Kiczales], is a class generat-
ed at run-time by composing a fromigting classes. Thexisting
classes, in our case, are the classes representing simple entity
types produced through translation of the EXPRESS source.

In an EXPRESS efronment, generation of programmatic

classes for the entity types requires \whealge of theevaluated

set the set of all Igal entity types [ISO-11]. Thevaluated set is
calculated by a computation on the declaration of subtyping con-
straints (thesupertype-constraint clausef all entity declarations

in the subject EXPRESSThis computation generates a structure,
complex-entity-type , for each element of thevauated

set. This structure identifies the simple entity types (those which

3.0 ELEMENTS OF THE SOLUTION

The author is deeloping an EXPRESS languagevieanment
using Common Lisp and the CLOS metaobject protocol. A
metaobject protocol is an intade to a language thatvgs the
programmer the ability to incrementally modify the langusiye*-
havior and implementation [Kiczales]. The metaobject protocol is > ' 3 >
used to eliminate the mismatch between the implementation lan- &€ &plicitly defined in the EXPRESS source) composing the
guage (CLOS) object model and thegitrlanguage (EXPRESS) comple entity type. Whe_n an EXPRESS entity instance is en-
object model so that the mechanisms of the implementation lan- countered through reading data in thecteange format of
guages object systeme(g., object definition, instance creation, ~EXPRESS information models, [ISO-21], its type is cleetk
method dispatchingtc) can be reused. The maition behind agalr_lst the ealuated set _and, ifgal and already generated, is in-
this approach is the belief that the reuse of these mechanisms willStantiated. If the type is dal but the class has not yet been

enhance the quality and speed of implementation. generated, the class is generated using the programmatic class
mechanism. Through this means classes representing coenple

tity types are not defined until there is a need to instantiate an
entity of that class. The programmatic class generated contains the
information and attriites of each of the superclasses (simple enti-
ty types) from which it inherits.

The solution also employs dynamic object technigees fun-
time class definition, class redefinition). Dynamic object tech-
niques support the requirements that thevirenment be
responsie and that information models undeve@epment may
be incrementally refined. Dynamic object techniques alsag®o

a solution to the proliferation of classes that can occur because of CHALLENGE(same-named-atti a challenge for Common
EXPRESS ANDOR subtyping. Lisp because CLOS classes inheriting a same-named slot from

o o o o two superclasses produce a single slot. CLOS classes inherit this
A principle benefit of implementing in Common Lisp is that the pepajior from the standard class metaobject (sometimes called a
design may possess the adiages of both compiled and interpret- metaclasy STANDARD-CLASS. The solution to this problem
ed approaches with Ve of the disadantages of eitherFor uses the metaobject protocol to yide a subclass 0STAN-
example, adantages of a compiled approach can be had: the sys- pARD-CLASS(calledEXPRESS-CLASShere) that overrides the
tem can translate EXPRESS information models into Common gt computation methods @TANDARD-CLASSvith methods
Lisp source code that can be compiletiliol and loaded at gn that produce multiple slots in accordance with EXPRESS object
time during a session with the system.deatibraries of eisting model behwaior. Although the class of the classes representing
EXPRESS information models can be accessed by the EXPRESSExpRESS entity types is no long8TANDARD-CLASSother
dewloper by these means. On the other hand, the benefits of an in-c|3sses in the system are undisturbed by this modification.

terpreter remain: EXPRESS written in the current session can]))
immediately and incrementally be madeaitable by run-time The .metaobject. protocol is also useq to ensure t.he.tt. all of the in-
translation to Common Lisp angiauation by the lisp interpreter ~ formation found in an EXPRESS entity type definition can be
Because Common Lisp provides a resident programming environ- €ncoded in the corresponding CLOS class objertekample, the
ment and interpretethe deelopment of a compieinterpreter standard CLOS metaobject defining slot featuBBANDARD-
‘execution engine’ is obviated. SLOT, was subclassed by a claSXPRESS-SLOTto allov the

recording of EXPRESS-specific features of atti@s. Br exam-

ple, EXPRESS entity attribles may be declared @PTIONAL
e so that instances are free tovedhat attribute’s value unspecified.
5The careful reader might recognize that, for even more fundamental rea- To implement this featur&€XPRESS-SLOTextends the class

sons (because C++ does not allow run-time creation of classes) dictionary STANDARD-SLOTwith an additional slotOPTIONAL-P, indi-
objects are necessary in every incremental development environment im- '

plemented in C++ (to describe entity types). The point here is to illustrate

one advantage of having information about the class available in the class:

the programmer has one less requirement on his implementation of dictio- “The supertype-constraint clause includesAN®ORonstraint described
nary objects. earlier as well a8NQ ONEOFandABSTRACTconstraints.

cating whether the EXPRESS attrib is optional. In a similar perform the translation, the source language isdoihvparsed into

fashion the EXPRESS attute featuresDERIVED INVERSE structures, then rewrite rules are executed to transform the abstract
andUNIQUE and the recording of the attife’s source (the sim- syntax tree structures to a tree corresponding to tigettéan-
ple entity type from which it is inherited) and EXPRESS type is guage. Finallythe re@erse parser (print functions) of theger
accommodated in the extended slot definition metaobject. language is used to produce the corresponding statements in the

tamget language. Using this approach, translation gelgra mat-

ter of specifying the BNF for both languages and setsvafitee
rules to transform the syntax tree from the form of the source lan-
guage to form of the target language.

A solution toCHALLENGE(redefined-attr)where it is neces-
sary to determine whether the domain of an aiteilin a subtype
is indeed a restriction of the domain of the same-nameduagtrib
in the supertype, has yet to be implemented. The solution requires

analysis of the types of both atuiles and will probably be ac- The transformation of the abstract syntax tree is performed by a
complished by unificatidhon the typed feature structures stored sister application of Zebcalled Zebra, [Knrad]. Zebra pnades
as type information of the attributes involved. a rule-based language for the pre-order and post-order transforma-

tion of abstract syntax trees produced by Zebu.

Zehu and Zebra hae been ery efective tools in @ercoming
4.0 SYSTEM ARCHITECTURE the complexity of EXPRESS translation.

EXPRESS is a moderately ¢gr languagé.Because of this, an
efficient solution to the problem of translating EXPRESS source
to Common Lisp forms is essential. The system, therefore, is com- 5.0 CONCLUSION

prised of three components: The immediate goal of thisatk has been the design of a tool

e acore component that provides the behaviors of the for the eficient development of EXPRESS models. Such a tool
EXPRESS object model, as described earlier, and entity will serve the needs of EXPRESSveééopers. The software should
instance reading and writing routines using STEP file- also find reuse in the @elopment of EXPRESS translatoesd.,
based exchange form, [ISO-21]; to CORBA IDL [CORBA], Unified method [Booch]getc). Be-

yond EXPRESS lay the Iger aspects of the STEP architecture,
(e.g.,application protocols, intgated resources). The application

of these same techniques of meta-level and dynamic programming
to these aspects STEP, for example, for the facilitation of reuse of
integrated resources in application protocols, mayide an
even greater benefit.

. an EXPRESS parser that builds typed feature structures
from the input EXPRESS. (Feature structures are ele-
ments of a logic on which unification, generalization and
specialization are defined). Typed feature structures are
modeled as Common Lisp structures;

* arule-based syntax transformation component that trans-
forms the syntax tree of feature structures produced by
the parser to a syntax tree of feature structures in the tar-
get language, Common Lisp.

Finally, this work has shan that a good design of a language
ervironment for a object flored language may use the imple-
mentation language’'metaobject protocol (where ongists) to
align the implementatios’object model bek@rs with the needs

The last two of these components are discussed in this section. Of the taget language objects. This approach may result in a
i) smaller, more comprehensible program. Because the machinery of
An EXPRESS parser is produced from the Zedversible LA-

native object system is reused, the programmer may continue to
LR(1) _par;er generator [Lau_bsch]. Zegenerates parsers that are use the dmiliar, natve means of attrilte access, object creation
reversible in the sense that it produces code for both a &faliv and method definition.
parse to Common Lisp structures and aéree” parse back to the
source languagee(g., EXPRESS). The erse parse is imple- Dynamic object techniques areditise critical to the solution.
mented as print functions on the Common Lisp structures Dynamic object creation alles a straightfonard solution to the
generated in the foravd parse. Hence when a Common Lisp Proliferation of implicitly defined, potentially unpopulated classes

structure resulting from the foewd parse of EXPRESS is printed ~ that might otherwise result from EXPRESS ANDOR subtyping.
by Lisp, it appears as the original EXPRESS. Because classes may be created at run-time, the system can be far

more responsive to the incremental development of the EXPRESS

Translation with the Zebu reversible parser can be performed by ;torm240n model.

providing rewersible parsers for both the input languagyg.(EX- -)) _
PRESS) and the output languageg(, certain lisp forms). @ In addition to the techniques of dynamic object and metl-le
programming, an étient means to translate from the subject lan-

8[Carpenter] provides an introduction to the logic of typed feature struc- 10Recall that lisp programmers have the freedom to define how some lisp

tures. objects are printed by the lisp printer. Structures are printed according to a
function defined in thelefstruct . CLOS objects are printed according
%The EXPRESS grammar consists of more than 450 productions. to the methogbrint-object

guage is necessarplthough, to date, only a small amount of

sources: Geometric and Topological Representatisternational

necessary syntax transformation has been performed in this Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

project, the combination of versible parsers with rule-based tree
transformation looks very promising.

ACKNOWLEDGEMENTS

The author wuld like to acknwledge the important conttib
tion to the softwre deelopment of this project made by Joachim
Laubsch of Hevlett-Packard Laboratories, who d&oped Zeh
and preided hug fixes and suggestions. lekise, Karsten kn-

rad’s program, Zebra, and his suggestions on its usage helped to

malke this work much easiefThe author wuld also lile to thank
the workshop reiewers, Daid Terebessy and kaence Mayka
and NIST reiewers, Bill DannerKC Morris and Mary Mitchell
for insightful comments. Bill Dannex’ideas for future delop-
ment are especially appreciated.

REFERENCES

[Booch] Grady Booch and James Rumbaugdhified Method
for Object-Oriented DevelopmerRational Software Corporation,
1995.

[Carpenter] Bob Carpentefhe Laic of Typed Featue Struc-
tures Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, 1993

[CORBRA] The Object Management Group, Inthe Common
Object Request Bker: Architectue and Specification (CORE,
The Object Management Group Inc., http://raioyg.org/pubo-
dr.htm#Publications, 1995

[ISO-1] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exang — Overviee and Fundamen-
tal Principles International Standard, 1SO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/stép, 1994.

[ISO-11] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Description Methods: The
EXPRESS Langge Refeence Manual International Standard,
ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-21] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Implementation Methods:
Clear Text Encoding of the Ekang Structue, International
Standard, ISO TC184/SCA4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-42] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Ekange — Intgrated Generic Re-

1450 IS level references are copyrighted and may be purchased from 1SO.

Draft copies can be obtained for free at this FTP address.

[ISO-218] International @anization for StandardizatiohSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Application Rstocol: Ship
Structures, International Standard, I1SO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step, 1994.

[Liang] Sheng Liang, &l Hudak and Mark Jone$/onad
Transformes and Modular Interpeters Principles of Program-
ming Languages’95, San Francisco, CA, January, 1995.

[Libes] Don Libes and Steve Clarkhe NIST EXPRESS Toolkit
- Lessons LearnedEXPRESS Users Group Conference Proceed-
ings (EUG’92) Dallas, Texas, October 17-18, 1992.

[Kiczales] Gregor Kiczales, Jim des Rivieres and Daniel G. Bo-
brow, The Art of the Metaobject Btocol, The MIT Press,
Cambridge, Massachusetts, 1991.

[Kiekenbeck] Juagyen Kielenbeck, Annette Sgenthaler and
Gunter SchlageteEXPRESS to C++: A mapping of the type-sys-
tem EXPRESS Users Group Conference Proceedings (EUG’95)
Grenoble, France, October 21-22, 1995.

[Konrad] Karsten Knrad,Abstiakte Syntaxinsformation mit
getypen MerkmalstermenDiplom Thesis, ftp:/cl-ftp.dfki.uni-
sb.de, September 23, 1994.

[Laubsch] Joachim LaubscEehu: A Tool for Specifying Re-
versible LALR(1) Brsers Hewlett-Packard Laboratories,
Software Technology Laboratoryinternal Report, July 26, 1995.
http://www.cs.cmu.edu/Web/Groups/Al/html/repository.html.

[Manola] Frank Manola, EditprX3H7 Technical Committee
(Object Information Managementfeatures Matrix of Object
Models, Final Technical Report, ftp://ftp.gte.com/pub/dom/x3h7/
adfinal.ps, March, 1996.

[Morris] Katherine C. Morris, Dad Sauder and Sandy Ressler
Validation Testing System: Reusable Software Component Design
National Institute of Standards an@chnology NISTIR 4937,
October, 1992

[Schenck] Douglas Schenck and Peteils@h, Information
Modeling: The EXPRESS Wéyxford University Press, 1994.

[STI] STEP Dols Inc.,Home Rge http://wwwsteptools.com/
index.html

[Wilson] Peter Wilson, EXPRESS dols and Services, (1990-
1995) ftp://publ/step/express/tools/etools.ps, September, 1995.

[X3J16] ANSI Accredited Standards Committee X3JM@yrk-
ing Paper for Dmaft Proposed International Standar for
Information Systems Bgramming Languge C++, http:/
www.cygnus.com/misc/wp/draft/, April 28, 1995.

Dynamic Objects W orkshop
Object W orld, 1996

Dynamic Objects and Meta-level Programming of an EXPRESS Language Environment

Peter Denno

Manufacturing Systems Integration Division
National Institute of Standards and Technology
Gaithersburg, Maryland, USA

pdenno@cme.nist.gov
(301) 975-3595

ABSTRACT have contrilited to the deslopment of an EXPRESS language en-
vironment and he these same techniques might find use in the

This paper describes design and programming techniques em_larger context of STEP development.

ployed in the deelopment of a language eronment for the
EXPRESS information modeling language. A fundamental con-
cern in the deelopment of language @nonments for object
flavored languages is thegtee to which the object model of the 2.0 BACKGROUND
implementation language matches that of the language being mod- xpRESS [1ISO-11], [Schenck] is a formal language used to de-
eled. If there is significant mismatch, the programmer is forced to g¢ripe information models of STEPhe STEP standards support
reconcile the dferences with little aid from the implementation ¢ unambiguous communication of industrial information e
language’s object modele. escheving the implementation's na- changed in forms dafed from EXPRESS language information
tive object model and programming with elementary tools the mqgels! within the STEP architecture, moduct modelthat is,
object oriented behaviors of the target language environment. This 4, jnformation model from which a range of similar adit can
paper describes how object model mismatch was eliminated and ape gescribed, is defined by application protocolfor example,
responsive, incremental EXPRESS language environment is being e application protocoBhip Structures[|SO-218]). Application
dewloped using the Common Lisp Object System (CLOS) protocols rely on libraries of commonly used concepts ciriied
metaobject protocol (MOP) and dynamic object techniques. grated resourcesThe integrated resources collectively describe an
abstract model of products. Components of the abstract model in-
clude, for @ample, Geometric and dpolagical Repesentations
1.0 INTRODUCTION [1SO-42], which can be used in the description of application pro-
tocol for ship structures, automagicomponentsgtc.. The reuse
of common components improves the quality and development ef-
ficiengy of application protocols andhdilitates information
sharing among related disciplinesd., design systems and pro-
duction scheduling systems may share an entity authorizing the
release of a part for production).

The paper kgins with a presentation of background information
recarding EXPRESS and its role in ISO 10303, more commonly
referred to as STEP (The Standard for the Exchange of Product
Model Data). Section 2.1 primles an werview of design princi-
ples commonly empied in the design of EXPRESS language
tools. Sections 2.2 and 2.3 concern the problems of object model
mismatch that confront designers of EXPRESS tools. Section 3.0 Integrated resources and application protocols are defined in the
presents aspects of the auted@ommon Lisp implementation of EXPRESS language. Further discussion of the STEP architecture
an EXPRESS languagewmnment. It describes solutions to the [ISO-1] is outside the scope of this paper.
problems introduced in section 2 empta dynamic object tech-
niques, CLOS and its metaobject protocol. Section 4.0 describes
additional aspects of the EXPRESS languager@mment cur-
rently under deelopment. The paper concludes with a summary —
of honv dynamic object techniques and meteeleprogramming 1EXPRESS itself is an 1SO standard developed by the STEP community.

In order to cowey the information intended, systems that e

model, the STEP community is quite interested in tools that im-

change data must agree upon the semantics of that data. Aprove the efficiency of EXPRESS development.

fundamental design goal of an information modeling language,
such as EXPRESS, is to pide the means to describe informa-
tion models (and subsequently data) reflecting a mutually
understood semantics. That is, the language is used to define con
straints which data setx@ghanged must satisfyn EXPRESS
these constraints take several forms:

Constraints on an attribute’s type? 3 the value of an
attribute must be type-compatible with the type declared
in the attributes’s declaration.

Constraints on semantic consistency of entity
instances:Rules calledvhere rulescan be associated
with an entity type. For example, an entity type named
unit-vector possessinREALvalued attributex

andy might hae a where rule requiring*2 + y**2

=1 . These rules are procedurally defined in EXPRESS
and may rely on built-in and user-defined functions and
procedures.

Constraints on an entity instance’s typeEXPRESS
provides a flexible mechanism for defining and compos-
ing hierarchical entity types (calledmplex entity

typed and constraints on the legal composition of types
within the hierarchy. For example, an abstract {ype

son might have subtypasale andfemale . An

instance operson must be one ahale orfemale

but not both.

Constraints on populations of entity instancesPopu-
lations of entities (data sets) must satisfy constraints
described irglobal rules Such rules can, for example,
constrain the cardinality of the instances of a type.(
there is only one CEO) or require specific relationships
between entitiese(g, every employee has a supervisor).

Constraints on the existence of an entity instanc&he
existence on an entity may depend on the existence of
another entity.

2.1 Classification of EXPRESS Langua ge Environments

A language erironment for EXPRESS, that is, anvennment
that allows the delopment of EXPRESS information models and

sample data sets, can be of great value to developers of EXPRESS

information models. The EXPRESS for some STEP standards can
run into the thousands of lines of code. Since thveldpment of
STEP standards has peal to be a lengshprocess and a Ige part

of that effort invol\es the articulation of an EXPRESS information

“Attributescorrespond to C++ data members or CLOS slots. Attributes are
associated witlentities analogous to C++ or CLOS classes.

SEXPRESS defines the usual primétitypes and enumeration and ato
userdefined types that generalize or specialize on prienitr other user
defined types

Sewral tools supporting EXPRESS védopment gist, [Wil-
son], [Libes], [Morris], [STI], [Kielenbeck]. The focus of these
tools is more the validation of data sets, the exploration of existing

models, and the generation of application istegt than it is the
incremental development ofweEXPRESS models. Theonk de-
scribed here has as its goal thevedepment of a respons,
incremental development environment for the concurrent develop-
ment of EXPRESS models and represevgatiata sets, (such an
environment as is available to Lisp programmers).

The design of languageeéronments include strictly interpret-
ed approaches, strictly compiled approaches, and designs that
utilize both interpretation and compilatioro @late, compiled ap-
proaches to EXPRESS tools ([Morris], [STI], [Keskbeck]) use
the subject EXPRESS to automatically generate code in an imple-
mentation languagee(g.,C++) which is then compiled and link-
edited with auxiliary libraries that are independent from the sub-
ject code. Compiled approaches to EXPRESSr@mments hee
adwantages er interpreted approaches in that libraries of com-
piled EXPRESS can be sl for later inclusion in information
models without incurring the cost of interpretation. Also, the auto-
matically generated source code is often useful @mious
applications that ant access to data in the form defined by the
subject EXPRESS model. Compiled approaches where compila-
tion and link-edit are lengyh however can not support a
responsie, incremental deelopment ewironment: complete pro-
cessing of layje EXPRESS models using this approach cam 38k
minutes or more.

A strictly interpreted approach can be more respertsi the in-
cremental deslopment of the EXPRESS subject codé ¢an not
take adwantage of compiled libraries of supporting EXPRESS in-
formation models. Nor can interpreters implemented in statically
compiled languages use the constructs of the langeagec(ass-
es, iteration, arithmetic operations) in direcys. or example,
an interpreter can not generate and use a C++ class to represent an
EXPRESS entity type.df these reasons, thevééopment of an
interpreter requires the ddopment of fundamental supporting
mechanisms unnecessary in compiled approaches. Therefore, the
dewelopment of an interpreter for a language aglas EXPRESS
is a daunting task. Recent developments in the design of interpret-
ers, havever might male interpreted approaches more feasible,
(e.g.,[Liang]).

Approaches that use both compilation and interpretation are
commonly implemented in languages possessing resident
programming environments, such as Smalltalk or Lisp.

2.2 Mismatch of Object Models

EXPRESS is an information modeling language, not a program-
ming language. EXPRESS is 'objectvfieed’ lut not strictly
object oriented. (It does not encapsulate state with methods). EX-
PRESS mags a distinction between classes and instances;sallo
class hierarchies and inheritance of data attributes.

An object modeis a model with a class/instance distinction, en-
capsulation of state via methods and inheritance ofviimhiaom

parent classe€oncrete object modelose underlying program-
ming languages,ary with respect to inheritance, encapsulation,
information hiding, dynamic capabilities andrius other fea-
tures [Manola]. A fundamental concern in thezelepment of a
language erironment for an object flared language is the de-

An example of this behaor (calledANDOR subtypindnere) is
illustrated in the following example EXPRESS.

ENTITY a SUPERCLASS OF (b ANDOR ¢ ANDOR d);

This clause declares that the entity combinations a, a+b, a+c,

gree to which the object model of the implementation language a+d, a+b+c, a+b+d, a+c+d and a+b+c+d are all instantiable, where
matches that of the language being modeled. If there is significant a+b+c, for @ample, denotes an angnous classdomple entity

mismatch between the object model of the implementation lan-

type possessing the attribes (data members, slots) of the classes

guage and that of the target language, the programmer is forced toa, b and c.

reconcile the dferences with little aid from the implementation
language's object model. That is, s@ftesis not reusedubrather,
beginning a@in with elementary tools, the programmer imple-
ments the object oriented bef@s of the taget language
ervironment. This, of course, is a great amount ofkfor what
might be a small (it crucial!) deiation towards the behaors of

the taget object model. This paper hopes to illustrate gieevof

a metaobject protocol (specifically the CLOS metaobject protocol)
in reconciling the dferences between the object models of the tar-
get and implementation languages.

2.3 Three Challenges in Object Model Mismatch 4

The EXPRESS object modetiiffers in some important ays
from the concrete object models underlying common program-
ming languages (C++, Smalltalk, CLOS). Significant areas of

Very different solutions to these challenges may be found de-
pending on the implementation language chosen.
CHALLENGE(same-named-atti¥ met quite easily when EX-
PRESS entities are represented as C++ classesdguicthat the
inheritance is declared virtual. On the same challenge CLOS does
not map well; it combines the two attributes into one slot. Howev-
er, by using the CLOS meta-object protocol, a reddyi simple
solution to this problem can be found.

Solutions taCHALLENGE(redefined-attmequire knowledge of
the attritute’s type in order to determine whether the type of the
attribute of the child is indeed a restriction of the type found in the
same-named attiibe of the parent. The implementation lan-
guages ability to prewvide access to descripéi information about
the class€.g, names of attribtes, attrilite objects, superclasses,
precedence orderingic) can facilitate this effort. For example, in
CLOS, usewdefined classes are instancestaindard-class

mismatch between these languages and EXPRESS are found inor some programmatefined subtype of istandard-class

the inheritance of attrilies (C++ data members, or CLOS slots)

is a subclass aftandard-object , on which default behaviors

and the approach to subclassing. Three characteristics of the EX-for objects are defined. Since classeg.(the classes representing

PRESS language that present challenges in tedafenent of an
EXPRESS language environment are described below:

« CHALLENGE(same-named-attr)When same-named
attributes of two EXPRESS entities are inherited through
two distinct paths (EXPRESS allows multiple inherit-
ance) two distinct attrilies are inherited by the subclass,
one from each parent defining the attribute.

* CHALLENGE(redefined-attr):In EXPRESS an attrilie
defined in a supertype may be redefined in the subtype
only if the domain of &lues of the subtype is a restriction
of the domain of the supertype. Thus an attribute of type
number in the supertype can be redefined as type
integer in the subtype, but dnteger in the super-
type can not be redefined aswanber in the subtype.

e CHALLENGE(ANDOR-subtyping):Unless explicitly
prohibited by a clause in the entity definition, the direct
subtypes of an EXPRESS entity type can be combined to
define additional subtypes.

EXPRESS entity types) are instances thenesglthe same ma-
chinery used by other instancesg(, access to attrilie \alues,
object constructioretc) can be reused by instances that are class-
es. An EXPRESS languagevaonment can use this machinery
directly, with one &ception: since the type system and sense of
type restriction defined in EXPRESS does not map directly to the
Common Lisp type system, the programmer must define a method
to order types by specificity.

In part because C++ classes are not objects theasseB#+
provides little support for solutions to this challenge. In C++, the
typeid operation applied to an object can be used to obtain a
type_info object for the original object, on which operations
for type collating, type equality and access to the gypame are
defined [X3J16]. Howeveno mechanismxésts in C++ to identi-
fy the data members.€., EXPRESS entity attrilites) of a class.
Therefore, some means other than querying the class must be
found to obtain attrittes. One method is to define ‘dictionary’ ob-
jects for both entities and attuites. These objects supplement the
information found in the class with references to attelobjects.
Dictionary objects are, in essence, a partial forfeiture from the
mapping of EXPRESS entity types to clasdes.

CHALLENGE(ANDOR-subtyping$ the problem of managing

“These are, of course, challenges for compiled approaches. Interpreted apthe proliferation of classes possible in ANDOR subtyping. That is,
proaches using static implementation languages can not make use of thehacguse of ANDOR subtyping, a dar EXPRESS information

objects in these ways.

5AIthough not strictly object oriented, EXPRESS possesses enough of the

characteristics of an object oriented language to make use of thelierm
ject modelmeaningful in this context.

model can result in the definition of hundreds of comgetity
types. ANDOR subtyping, although an advantage from the model-
er's standpoint, is a challenge to the languageir@mment
programmer. Br the C++ programmethe question is whether to
implement each compleentity as a class, thereby increasing the

size of the image and compile time, or opting for some solution
where comple entity types are not represented as a single C++
class, and thereby forfeiting some of the simplicity andagiee

in the object model mapping. An effective and simple CLOS solu-
tion to the proliferation of classesa& implemented in this avk.

It utilizes dynamic objects called ‘programmatic classes’ that are
composed as needed froxisting classes. [Kiczales]. This is de-
scribed further in the next section.

In the system being deloped, CHALLENGE(ANDOR-subtyp-
ing), that is, the proliferation of classes that might result if all
classes, including those that mighteebe populated, are created,
is sohed through the use of the programmatic class approach. A
programmatic class, as described in [Kiczales], is a class generat-
ed at run-time by composing a fromigting classes. Thexisting
classes, in our case, are the classes representing simple entity
types produced through translation of the EXPRESS source.

In an EXPRESS efronment, generation of programmatic

classes for the entity types requires \whealge of theevaluated

set the set of all Igal entity types [ISO-11]. Thevaluated set is
calculated by a computation on the declaration of subtyping con-
straints (thesupertype-constraint clausef all entity declarations

in the subject EXPRESSThis computation generates a structure,
complex-entity-type , for each element of thevauated

set. This structure identifies the simple entity types (those which

3.0 ELEMENTS OF THE SOLUTION

The author is deeloping an EXPRESS languagevieanment
using Common Lisp and the CLOS metaobject protocol. A
metaobject protocol is an intade to a language thatvgs the
programmer the ability to incrementally modify the langusiye*-
havior and implementation [Kiczales]. The metaobject protocol is > ' 3 >
used to eliminate the mismatch between the implementation lan- &€ &plicitly defined in the EXPRESS source) composing the
guage (CLOS) object model and thegitrlanguage (EXPRESS) comple entity type. Whe_n an EXPRESS entity instance is en-
object model so that the mechanisms of the implementation lan- countered through reading data in thecteange format of
guages object systeme(g., object definition, instance creation, ~EXPRESS information models, [ISO-21], its type is cleetk
method dispatchingtc) can be reused. The maition behind agalr_lst the ealuated set _and, ifgal and already generated, is in-
this approach is the belief that the reuse of these mechanisms willStantiated. If the type is dal but the class has not yet been

enhance the quality and speed of implementation. generated, the class is generated using the programmatic class
mechanism. Through this means classes representing coenple

tity types are not defined until there is a need to instantiate an
entity of that class. The programmatic class generated contains the
information and attriites of each of the superclasses (simple enti-
ty types) from which it inherits.

The solution also employs dynamic object technigees fun-
time class definition, class redefinition). Dynamic object tech-
niques support the requirements that thevirenment be
responsie and that information models undeve@epment may
be incrementally refined. Dynamic object techniques alsag®o

a solution to the proliferation of classes that can occur because of CHALLENGE(same-named-atti a challenge for Common
EXPRESS ANDOR subtyping. Lisp because CLOS classes inheriting a same-named slot from

o o o o two superclasses produce a single slot. CLOS classes inherit this
A principle benefit of implementing in Common Lisp is that the pepajior from the standard class metaobject (sometimes called a
design may possess the adiages of both compiled and interpret- metaclasy STANDARD-CLASS. The solution to this problem
ed approaches with Ve of the disadantages of eitherFor uses the metaobject protocol to yide a subclass 0STAN-
example, adantages of a compiled approach can be had: the sys- pARD-CLASS(calledEXPRESS-CLASShere) that overrides the
tem can translate EXPRESS information models into Common gt computation methods @TANDARD-CLASSvith methods
Lisp source code that can be compiletiliol and loaded at gn that produce multiple slots in accordance with EXPRESS object
time during a session with the system.deatibraries of eisting model behwaior. Although the class of the classes representing
EXPRESS information models can be accessed by the EXPRESSExpRESS entity types is no long8TANDARD-CLASSother
dewloper by these means. On the other hand, the benefits of an in-c|3sses in the system are undisturbed by this modification.

terpreter remain: EXPRESS written in the current session can]))
immediately and incrementally be madeaitable by run-time The .metaobject. protocol is also useq to ensure t.he.tt. all of the in-
translation to Common Lisp angiauation by the lisp interpreter ~ formation found in an EXPRESS entity type definition can be
Because Common Lisp provides a resident programming environ- €ncoded in the corresponding CLOS class objertekample, the
ment and interpretethe deelopment of a compieinterpreter standard CLOS metaobject defining slot featuBBANDARD-
‘execution engine’ is obviated. SLOT, was subclassed by a claSXPRESS-SLOTto allov the

recording of EXPRESS-specific features of atti@s. Br exam-

ple, EXPRESS entity attribles may be declared @PTIONAL
e so that instances are free tovedhat attribute’s value unspecified.
5The careful reader might recognize that, for even more fundamental rea- To implement this featur&€XPRESS-SLOTextends the class

sons (because C++ does not allow run-time creation of classes) dictionary STANDARD-SLOTwith an additional slotOPTIONAL-P, indi-
objects are necessary in every incremental development environment im- '

plemented in C++ (to describe entity types). The point here is to illustrate

one advantage of having information about the class available in the class:

the programmer has one less requirement on his implementation of dictio- “The supertype-constraint clause includesAN®ORonstraint described
nary objects. earlier as well a8NQ ONEOFandABSTRACTconstraints.

cating whether the EXPRESS attrib is optional. In a similar perform the translation, the source language isdoihvparsed into

fashion the EXPRESS attute featuresDERIVED INVERSE structures, then rewrite rules are executed to transform the abstract
andUNIQUE and the recording of the attife’s source (the sim- syntax tree structures to a tree corresponding to tigettéan-
ple entity type from which it is inherited) and EXPRESS type is guage. Finallythe re@erse parser (print functions) of theger
accommodated in the extended slot definition metaobject. language is used to produce the corresponding statements in the

tamget language. Using this approach, translation gelgra mat-

ter of specifying the BNF for both languages and setsvafitee
rules to transform the syntax tree from the form of the source lan-
guage to form of the target language.

A solution toCHALLENGE(redefined-attr)where it is neces-
sary to determine whether the domain of an aiteilin a subtype
is indeed a restriction of the domain of the same-nameduagtrib
in the supertype, has yet to be implemented. The solution requires

analysis of the types of both atuiles and will probably be ac- The transformation of the abstract syntax tree is performed by a
complished by unificatidhon the typed feature structures stored sister application of Zebcalled Zebra, [Knrad]. Zebra pnades
as type information of the attributes involved. a rule-based language for the pre-order and post-order transforma-

tion of abstract syntax trees produced by Zebu.

Zehu and Zebra hae been ery efective tools in @ercoming
4.0 SYSTEM ARCHITECTURE the complexity of EXPRESS translation.

EXPRESS is a moderately ¢gr languagé.Because of this, an
efficient solution to the problem of translating EXPRESS source
to Common Lisp forms is essential. The system, therefore, is com- 5.0 CONCLUSION

prised of three components: The immediate goal of thisatk has been the design of a tool

e acore component that provides the behaviors of the for the eficient development of EXPRESS models. Such a tool
EXPRESS object model, as described earlier, and entity will serve the needs of EXPRESSveééopers. The software should
instance reading and writing routines using STEP file- also find reuse in the @elopment of EXPRESS translatoesd.,
based exchange form, [ISO-21]; to CORBA IDL [CORBA], Unified method [Booch]getc). Be-

yond EXPRESS lay the Iger aspects of the STEP architecture,
(e.g.,application protocols, intgated resources). The application

of these same techniques of meta-level and dynamic programming
to these aspects STEP, for example, for the facilitation of reuse of
integrated resources in application protocols, mayide an
even greater benefit.

. an EXPRESS parser that builds typed feature structures
from the input EXPRESS. (Feature structures are ele-
ments of a logic on which unification, generalization and
specialization are defined). Typed feature structures are
modeled as Common Lisp structures;

* arule-based syntax transformation component that trans-
forms the syntax tree of feature structures produced by
the parser to a syntax tree of feature structures in the tar-
get language, Common Lisp.

Finally, this work has shan that a good design of a language
ervironment for a object flored language may use the imple-
mentation language’'metaobject protocol (where ongists) to
align the implementatios’object model bek@rs with the needs

The last two of these components are discussed in this section. Of the taget language objects. This approach may result in a
i) smaller, more comprehensible program. Because the machinery of
An EXPRESS parser is produced from the Zedversible LA-

native object system is reused, the programmer may continue to
LR(1) _par;er generator [Lau_bsch]. Zegenerates parsers that are use the dmiliar, natve means of attrilte access, object creation
reversible in the sense that it produces code for both a &faliv and method definition.
parse to Common Lisp structures and aéree” parse back to the
source languagee(g., EXPRESS). The erse parse is imple- Dynamic object techniques areditise critical to the solution.
mented as print functions on the Common Lisp structures Dynamic object creation alles a straightfonard solution to the
generated in the foravd parse. Hence when a Common Lisp Proliferation of implicitly defined, potentially unpopulated classes

structure resulting from the foewd parse of EXPRESS is printed ~ that might otherwise result from EXPRESS ANDOR subtyping.
by Lisp, it appears as the original EXPRESS. Because classes may be created at run-time, the system can be far

more responsive to the incremental development of the EXPRESS

Translation with the Zebu reversible parser can be performed by ;torm240n model.

providing rewersible parsers for both the input languagyg.(EX- -)) _
PRESS) and the output languageg(, certain lisp forms). @ In addition to the techniques of dynamic object and metl-le
programming, an étient means to translate from the subject lan-

8[Carpenter] provides an introduction to the logic of typed feature struc- 10Recall that lisp programmers have the freedom to define how some lisp

tures. objects are printed by the lisp printer. Structures are printed according to a
function defined in thelefstruct . CLOS objects are printed according
%The EXPRESS grammar consists of more than 450 productions. to the methogbrint-object

guage is necessarplthough, to date, only a small amount of

sources: Geometric and Topological Representatisternational

necessary syntax transformation has been performed in this Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

project, the combination of versible parsers with rule-based tree
transformation looks very promising.

ACKNOWLEDGEMENTS

The author wuld like to acknwledge the important conttib
tion to the softwre deelopment of this project made by Joachim
Laubsch of Hevlett-Packard Laboratories, who d&oped Zeh
and preided hug fixes and suggestions. lekise, Karsten kn-

rad’s program, Zebra, and his suggestions on its usage helped to

malke this work much easiefThe author wuld also lile to thank
the workshop reiewers, Daid Terebessy and kaence Mayka
and NIST reiewers, Bill DannerKC Morris and Mary Mitchell
for insightful comments. Bill Dannex’ideas for future delop-
ment are especially appreciated.

REFERENCES

[Booch] Grady Booch and James Rumbaugdhified Method
for Object-Oriented DevelopmerRational Software Corporation,
1995.

[Carpenter] Bob Carpentefhe Laic of Typed Featue Struc-
tures Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, 1993

[CORBRA] The Object Management Group, Inthe Common
Object Request Bker: Architectue and Specification (CORE,
The Object Management Group Inc., http://raioyg.org/pubo-
dr.htm#Publications, 1995

[ISO-1] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exang — Overviee and Fundamen-
tal Principles International Standard, 1SO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/stép, 1994.

[ISO-11] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Description Methods: The
EXPRESS Langge Refeence Manual International Standard,
ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-21] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Implementation Methods:
Clear Text Encoding of the Ekang Structue, International
Standard, ISO TC184/SCA4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-42] International Qganization for StandardizationSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Ekange — Intgrated Generic Re-

1450 IS level references are copyrighted and may be purchased from 1SO.

Draft copies can be obtained for free at this FTP address.

[ISO-218] International @anization for StandardizatiohSO
10303 Industrial Atomation Systems and Igtation — Poduct
Data Repesentation and Exange — Application Rstocol: Ship
Structures, International Standard, I1SO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step, 1994.

[Liang] Sheng Liang, &l Hudak and Mark Jone$/onad
Transformes and Modular Interpeters Principles of Program-
ming Languages’95, San Francisco, CA, January, 1995.

[Libes] Don Libes and Steve Clarkhe NIST EXPRESS Toolkit
- Lessons LearnedEXPRESS Users Group Conference Proceed-
ings (EUG’92) Dallas, Texas, October 17-18, 1992.

[Kiczales] Gregor Kiczales, Jim des Rivieres and Daniel G. Bo-
brow, The Art of the Metaobject Btocol, The MIT Press,
Cambridge, Massachusetts, 1991.

[Kiekenbeck] Juagyen Kielenbeck, Annette Sgenthaler and
Gunter SchlageteEXPRESS to C++: A mapping of the type-sys-
tem EXPRESS Users Group Conference Proceedings (EUG’95)
Grenoble, France, October 21-22, 1995.

[Konrad] Karsten Knrad,Abstiakte Syntaxinsformation mit
getypen MerkmalstermenDiplom Thesis, ftp:/cl-ftp.dfki.uni-
sb.de, September 23, 1994.

[Laubsch] Joachim LaubscEehu: A Tool for Specifying Re-
versible LALR(1) Brsers Hewlett-Packard Laboratories,
Software Technology Laboratoryinternal Report, July 26, 1995.
http://www.cs.cmu.edu/Web/Groups/Al/html/repository.html.

[Manola] Frank Manola, EditprX3H7 Technical Committee
(Object Information Managementfeatures Matrix of Object
Models, Final Technical Report, ftp://ftp.gte.com/pub/dom/x3h7/
adfinal.ps, March, 1996.

[Morris] Katherine C. Morris, Dad Sauder and Sandy Ressler
Validation Testing System: Reusable Software Component Design
National Institute of Standards an@chnology NISTIR 4937,
October, 1992

[Schenck] Douglas Schenck and Peteils@h, Information
Modeling: The EXPRESS Wéyxford University Press, 1994.

[STI] STEP Dols Inc.,Home Rge http://wwwsteptools.com/
index.html

[Wilson] Peter Wilson, EXPRESS dols and Services, (1990-
1995) ftp://publ/step/express/tools/etools.ps, September, 1995.

[X3J16] ANSI Accredited Standards Committee X3JM@yrk-
ing Paper for Dmaft Proposed International Standar for
Information Systems Bgramming Languge C++, http:/
www.cygnus.com/misc/wp/draft/, April 28, 1995.

